ABSTRACT
ACKNOWLEDGMENTS
The authors wish to thank Jamie Kuess for writing the software to present stimuli. This work was supported by Grant No. R01 DC000633 from the National Institutes of Health, National Institute on Deafness and Other Communication Disorders.
REFERENCES
- 1. Başkent, D., and Shannon, R. V. (2004). “ Frequency-place compression and expansion in cochlear implant listeners,” J. Acoust. Soc. Am. 116, 3130–3140. https://doi.org/10.1121/1.1804627, Google ScholarScitation, ISI
- 2. Blamey, P. J., Martin, L. F., and Clark, G. M. (1985). “ A comparison of three speech coding strategies using an acoustic model of a cochlear implant,” J. Acoust. Soc. Am. 77, 209–217. https://doi.org/10.1121/1.392260, Google ScholarScitation
- 3. Boothroyd, A., and Nittrouer, S. (1988). “ Mathematical treatment of context effects in phoneme and word recognition,” J. Acoust. Soc. Am. 84, 101–114. https://doi.org/10.1121/1.396976, Google ScholarScitation, ISI
- 4. Darwin, C. (2003). “ Sine-wave speech produced automatically using a script for the PRAAT program,” available at http://www.lifesci.sussex.ac.uk/home/Chris_Darwin/SWS/ (Last viewed February 20, 2014). Google Scholar
- 5. Donaldson, G. S., Dawson, P. K., and Borden, L. Z. (2011). “ Within-subjects comparison of the HiRes and Fidelity120 speech processing strategies: Speech perception and its relation to place-pitch sensitivity,” Ear Hear. 32, 238–250. https://doi.org/10.1097/AUD.0b013e3181fb8390, Google ScholarCrossref
- 6. Eisenberg, L. S., Shannon, R. V., Schaefer Martinez, A., Wygonski, J., and Boothroyd, A. (2000). “ Speech recognition with reduced spectral cues as a function of age,” J. Acoust. Soc. Am. 107, 2704–2710. https://doi.org/10.1121/1.428656, Google ScholarScitation, ISI
- 7. Falkner, A., Ball, V., Rosen, S., Moore, B. C. J., and Fourcin, A. (1992). “ Speech pattern hearing aids for the profoundly impaired: Speech perception and auditory abilities,” J. Acoust. Soc. Am. 91, 2136–2155. https://doi.org/10.1121/1.403674, Google ScholarScitation
- 8. Firszt, J. B., Koch, D. B., Downing, M., and Litvak, L. (2007). “ Current steering creates additional pitch percepts in adult cochlear implant recipients,” Otol. Neurotol. 28, 629–636. https://doi.org/10.1097/01.mao.1845281803.36574.bc, Google ScholarCrossref
- 9. Fishman, K. E., Shannon, R. V., and Slattery, W. H. (1997). “ Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor,” J. Speech Lang. Hear. Res. 40, 1201–1215. https://doi.org/10.1044/jslhr.4005.1201, Google ScholarCrossref
- 10. Fourakis, M. S., Hawks, J. W., Holden, L. K., Skinner, M. W., and Holden, T. A. (2004). “ Effect of frequency boundary assignment on vowel recognition with the Nucleus 24 ACE speech coding strategy,” J. Am. Acad. Audiol. 15, 281–299 https://doi.org/10.3766/jaaa.15.4.3. Google ScholarCrossref
- 11. Fourcin, A. J. (1990). “ Prospects for speech pattern element aids,” Acta Otolaryngol. Suppl. 469, 257–267. Google Scholar
- 12. Friesen, L. M., Shannon, R. V., Başkent, D., and Wang, X. (2001). “ Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants,” J. Acoust. Soc. Am. 110, 1150–1163. https://doi.org/10.1121/1.1381538, Google ScholarScitation, ISI
- 13. Fu, Q. J., and Shannon, R. V. (2002). “ Frequency mapping in cochlear implants,” Ear Hear. 23, 339–348. https://doi.org/10.1097/18453446-200208000-18459, Google ScholarCrossref
- 14. Goldman, R., and Fristoe, M. (2000). Goldman Fristoe 2: Test of Articulation ( American Guidance Service, Circle Pines, MN), 146 pp. Google Scholar
- 15. Greenwood, D. D. (1990). “ A cochlear frequency-position function for several species–29 years later,” J. Acoust. Soc. Am. 87, 2592–2605. https://doi.org/10.1121/1.399052, Google ScholarScitation, ISI
- 16. Hillenbrand, J., Getty, L. A., Clark, M. J., and Wheeler, K. (1995). “ Acoustic characteristics of American English vowels,” J. Acoust. Soc. Am. 97, 3099–3111. https://doi.org/10.1121/1.411872, Google ScholarScitation, ISI
- 17. Kewley-Port, D., Pisoni, D. B., and Studdert-Kennedy, M. (1983). “ Perception of static and dynamic acoustic cues to place of articulation in initial stop consonants,” J. Acoust. Soc. Am. 73, 1779–1793. https://doi.org/10.1121/1.389402, Google ScholarScitation
- 18. Kiefer, J., von, I. C., Rupprecht, V., Hubner-Egner, J., and Knecht, R. (2000). “ Optimized speech understanding with the continuous interleaved sampling speech coding strategy in patients with cochlear implants: Effect of variations in stimulation rate and number of channels,” Ann. Otol. Rhinol. Laryngol. 109, 1009–1020 https://doi.org/10.1177/000348940010901105. Google ScholarCrossref
- 19. Kuhl, P. K., and Meltzoff, A. N. (1982). “ The bimodal perception of speech in infancy,” Science 218, 1138–1141. https://doi.org/10.1126/science.7146899, Google ScholarCrossref
- 20. Levitt, H. (1991). “ Signal processing for sensory aids: A unified view,” Am. J. Otol. 12(Suppl), 52–55. Google Scholar
- 21. Loizou, P. C., Dorman, M., and Tu, Z. (1999). “ On the number of channels needed to understand speech,” J. Acoust. Soc. Am. 106, 2097–2103. https://doi.org/10.1121/1.427954, Google ScholarScitation, ISI
- 22. Lowenstein, J. H., Nittrouer, S., and Tarr, E. (2012). “ Children weight dynamic spectral structure more than adults: Evidence from equivalent signals,” J. Acoust. Soc. Am. 132, EL443–EL449. https://doi.org/10.1121/1.4763554, Google ScholarScitation, ISI
- 23. Mackersie, C. L., Boothroyd, A., and Minniear, D. (2001). “ Evaluation of the Computer-Assisted Speech Perception Assessment Test (CASPA),” J. Am. Acad. Audiol. 12, 390–396. Google Scholar
- 24. Martin, N., and Brownell, R. (2011). Expressive One-Word Picture Vocabulary Test (EOWPVT), 4th ed. ( Academic Therapy Publications, Novato, CA), 99 pp. Google Scholar
- 25. Nilsson, M., Soli, S. D., and Sullivan, J. A. (1994). “ Development of the hearing in noise test for the measurement of speech reception thresholds in quiet and in noise,” J. Acoust. Soc. Am. 95, 1085–1099. https://doi.org/10.1121/1.408469, Google ScholarScitation, ISI
- 26. Nittrouer, S., and Boothroyd, A. (1990). “ Context effects in phoneme and word recognition by young children and older adults,” J. Acoust. Soc. Am. 87, 2705–2715. https://doi.org/10.1121/1.399061, Google ScholarScitation, ISI
- 27. Nittrouer, S., and Lowenstein, J. H. (2010). “ Learning to perceptually organize speech signals in native fashion,” J. Acoust. Soc. Am. 127, 1624–1635. https://doi.org/10.1121/1.3298435, Google ScholarScitation, ISI
- 28. Nittrouer, S., Lowenstein, J. H., and Packer, R. (2009). “ Children discover the spectral skeletons in their native language before the amplitude envelopes,” J. Exp. Psychol. Hum. Percep. Perform. 35, 1245–1253. https://doi.org/10.1037/a0015020, Google ScholarCrossref
- 29. Nittrouer, S., Tarr, E., Bolster, V., Caldwell-Tarr, A., Moberly, A. C., and Lowenstein, J. H. (2014). “ Low-frequency signals support perceptual organization of implant-simulated speech for adults and children,” Int. J. Audiol. 53, 270–284. https://doi.org/10.3109/14992027.2013.871649, Google ScholarCrossref
- 30. Remez, R. E., Cheimets, C. B., and Thomas, E. F. (2013). “ On the tolerance of spectral blur in the perception of words,” Proc. Meet. Acoust. 19, 1–6 https://doi.org/10.1121/1.4800254. Google ScholarScitation
- 31. Remez, R. E., Rubin, P. E., Pisoni, D. B., and Carrell, T. D. (1981). “ Speech perception without traditional speech cues,” Science 212, 947–949. https://doi.org/10.1126/science.7233191, Google ScholarCrossref
- 32. Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., and Ekelid, M. (1995). “ Speech recognition with primarily temporal cues,” Science 270, 303–304. https://doi.org/10.1126/science.270.5234.303, Google ScholarCrossref
- 33. Shannon, R. V., Zeng, F. G., and Wygonski, J. (1998). “ Speech recognition with altered spectral distribution of envelope cues,” J. Acoust. Soc. Am. 104, 2467–2476. https://doi.org/10.1121/1.423774, Google ScholarScitation, ISI
- 34. Studdert-Kennedy, M. (1983). “ Limits on alternative auditory representations of speech,” Ann. N.Y. Acad. Sci. 405, 33–38. https://doi.org/10.1111/j.1749-6632.1983.tb31615.x, Google ScholarCrossref
- 35. Tye-Murray, N., Lowder, M., and Tyler, R. S. (1990). “ Comparison of the F0F2 and F0F1F2 processing strategies for the Cochlear Corporation cochlear implant,” Ear Hear. 11, 195–200. https://doi.org/10.1097/18453446-199006000-18455, Google ScholarCrossref
- 36. Wilkinson, G. S., and Robertson, G. J. (2006). The Wide Range Achievement Test (WRAT), 4th ed. ( Psychological Assessment Resources, Lutz, FL), 494 pp. Google Scholar
- 37. Wilson, B. S., Finley, C. C., Lawson, D. T., Wolford, R. D., Eddington, D. K., and Rabinowitz, W. M. (1991). “ Better speech recognition with cochlear implants,” Nature 352, 236–238. https://doi.org/10.1038/352236a0, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.