ABSTRACT
A generalized Rayleigh–Plesset-type bubble dynamics model with a damage mechanism is developed for cavitation and damage of soft materials by focused ultrasound bursts. This study is linked to recent experimental observations in tissue-mimicking polyacrylamide and agar gel phantoms subjected to bursts of a kind being considered specifically for lithotripsy. These show bubble activation at multiple sites during the initial pulses. More cavities appear continuously through the course of the observations, similar to what is deduced in pig kidney tissues in shock-wave lithotripsy. Two different material models are used to represent the distinct properties of the two gel materials. The polyacrylamide gel is represented with a neo-Hookean elastic model and damaged based upon a maximum-strain criterion; the agar gel is represented with a strain-hardening Fung model and damaged according to the strain-energy-based Griffith's fracture criterion. Estimates based upon independently determined elasticity and viscosity of the two gel materials suggest that bubble confinement should be sufficient to prevent damage in the gels, and presumably injury in some tissues. Damage accumulation is therefore proposed to occur via a material fatigue, which is shown to be consistent with observed delays in widespread cavitation activity.
ACKNOWLEDGMENTS
The authors are grateful for fruitful discussions with T. Colonius, K. Maeda, B. Dunmire, B. Cunitz, and M. Bailey. This work was supported by the National Institutes of Health (NIH) NIDDK Grant No. P01-DK043881.
REFERENCES
- 1. A. P. Evan, L. R. Willis, J. A. McAteer, M. R. Bailey, B. A. Connors, Y. Shao, J. E. Lingeman, J. C. Williams, N. S. Fineberg, and L. A. Crum, “ Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy,” J. Urol. 168, 1556–1562 (2002). https://doi.org/10.1016/S0022-5347(05)64520-X, Google ScholarCrossref, ISI
- 2. B. R. Matlaga, J. A. McAteer, B. A. Connors, R. K. Handa, A. P. Evan, J. C. Williams, J. E. Lingeman, and L. R. Willis, “ Potential for cavitation-mediated tissue damage in shockwave lithotripsy,” J. Endourol. 22, 121–126 (2008). https://doi.org/10.1089/end.2007.9852, Google ScholarCrossref, ISI
- 3. W. Kreider, A. D. Maxwell, B. W. Cunitz, Y. Wang, D. Lee, M. D. Sorensen, J. D. Harper, O. A. Sapozhnikov, V. A. Khokhlova, and M. R. Bailey, “ In vivo cavitation thresholds and injury observations related to burst wave lithotripsy,” J. Acoust. Soc. Am. 138, 1846–1846 (2015). https://doi.org/10.1121/1.4933875, Google ScholarScitation
- 4. A. P. Evan and J. A. McAteer, “ Q-effects of shock wave lithotripsy,” in Kidney Stones: Medical and Surgical Management ( Lippincott-Raven, Philadelphia, NY, 1996), pp. 549–570. Google Scholar
- 5. Y. Shao, B. A. Connors, A. P. Evan, L. R. Willis, D. A. Lifshitz, and J. E. Lingeman, “ Morphological changes induced in the pig kidney by extracorporeal shock wave lithotripsy: Nephron injury,” Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 275, 979–989 (2003). https://doi.org/10.1002/ar.a.10115, Google ScholarCrossref
- 6. M. R. Bailey, Y. A. Pishchalnikov, O. A. Sapozhnikov, R. O. Cleveland, J. A. McAteer, N. A. Miller, I. V. Pishchalnikova, B. A. Connors, L. A. Crum, and A. P. Evan, “ Cavitation detection during shock-wave lithotripsy,” Ultrasound Med. Biol. 31, 1245–1256 (2005). https://doi.org/10.1016/j.ultrasmedbio.2005.02.017, Google ScholarCrossref, ISI
- 7. T. G. Leighton, F. Fedele, A. J. Coleman, C. McCarthy, S. Ryves, A. M. Hurrell, A. De Stefano, and P. R. White, “ A passive acoustic device for real-time monitoring of the efficacy of shockwave lithotripsy treatment,” Ultrasound Med. Biol. 34, 1651–1665 (2008). https://doi.org/10.1016/j.ultrasmedbio.2008.03.011, Google ScholarCrossref
- 8. A. D. Maxwell, B. W. Cunitz, W. Kreider, O. A. Sapozhnikov, R. S. Hsi, J. D. Harper, M. R. Bailey, and M. D. Sorensen, “ Fragmentation of urinary calculi in vitro by burst wave lithotripsy,” J. Urol. 193, 338–344 (2015). https://doi.org/10.1016/j.juro.2014.08.009, Google ScholarCrossref, ISI
- 9. W. Kreider, A. D. Maxwell, B. W. Cunitz, Y.-N. Wang, D. Lee, K. Maeda, P. Movahed, V. A. Khokhlova, M. R. Bailey, T. Colonius, and J. Freund, “ Ultrasound imaging feedback to control kidney injury caused by burst wave lithotripsy,” in 33rd World Congress of Endourology & SWL, London, UK, 2015. Google Scholar
- 10. Y.-N. Wang, W. Kreider, A. Maxwell, D. Lee, J. Park, B. Cunitz, M. Sorensen, R. Handa, M. Bailey, and V. Khokhlova, “ The use of Magnetic Resonance Imaging to evaluate injury caused by burst wave lithotripsy for stone comminution,” in 33rd World Congress of Endourology & SWL, London, UK, 2015. Google Scholar
- 11. W. W. Roberts, T. L. Hall, K. Ives, J. S. Wolf, J. B. Fowlkes, and C. A. Cain, “ Pulsed cavitational ultrasound: A noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney,” J. Urol. 175, 734–738 (2006). https://doi.org/10.1016/S0022-5347(05)00141-2, Google ScholarCrossref, ISI
- 12. Z. Xu, J. B. Fowlkes, A. Ludomirsky, and C. A. Cain, “ Investigation of intensity thresholds for ultrasound tissue erosion,” Ultrasound Med. Biol. 31, 1673–1682 (2005). https://doi.org/10.1016/j.ultrasmedbio.2005.07.016, Google ScholarCrossref
- 13. Y. N. Wang, T. Khokhlova, M. Bailey, J. H. Hwang, and V. Khokhlova, “ Histological and biochemical analysis of mechanical and thermal bioeffects in boiling histotripsy lesions induced by high intensity focused ultrasound,” Ultrasound Med. Biol. 39(3), 424–438 (2013). https://doi.org/10.1016/j.ultrasmedbio.2012.10.012, Google ScholarCrossref
- 14. V. A. Khokhlova, J. B. Fowlkes, W. W. Roberts, G. R. Schade, Z. Xu, T. D. Khokhlova, T. L. Hall, A. D. Maxwell, Y. N. Wang, and C. A. Cain, “ Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications,” Int. J. Hyperthermia 31(2), 145–162 (2015). https://doi.org/10.3109/02656736.2015.1007538, Google ScholarCrossref
- 15. M. S. Plesset, “ The dynamics of cavitation bubbles,” J. Appl. Mech. 16, 277–282 (1949). Google ScholarCrossref
- 16. J. W. S. Rayleigh, “ On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917). https://doi.org/10.1080/14786440808635681, Google ScholarCrossref
- 17. M. S. Plesset and A. Prosperetti, “ Bubble dynamics and cavitation,” Ann. Rev. Fluid Mech. 9, 145–185 (1977). https://doi.org/10.1146/annurev.fl.09.010177.001045, Google ScholarCrossref
- 18. C. E. Brennen, Cavitation and Bubble Dynamics ( Oxford University Press, New York, 1995), p. 286. Google Scholar
- 19. F. R. Gilmore, “ The growth or collapse of a spherical bubble in a viscous compressible liquid,” Report No. 26-4, 1952. Google Scholar
- 20. J. B. Keller and M. Miksis, “ Bubble oscillations of large amplitude,” J. Acoust. Soc. Am. 68, 628–633 (1980). https://doi.org/10.1121/1.384720, Google ScholarScitation, ISI
- 21. A. Prosperetti and A. Lezzi, “ Bubble dynamics in a compressible liquid. Part 1. First-order theory,” J. Fluid Mech. 168, 457–478 (1986). https://doi.org/10.1017/S0022112086000460, Google ScholarCrossref, ISI
- 22. J. S. Allen, R. Roy, and C. C. Church, “ On the role of shear viscosity in mediating inertial cavitation from short–pulse, megahertz-frequency ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 743–751 (1997). https://doi.org/10.1109/58.655189, Google ScholarCrossref
- 23. J. S. Allen and R. A. Roy, “ Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity,” J. Acoust. Soc. Am. 107, 3167–3178 (2000). https://doi.org/10.1121/1.429344, Google ScholarScitation, ISI
- 24. J. B. Freund, “ Suppression of shocked-bubble expansion due to tissue confinement with application to shock-wave lithotripsy,” J. Acoust. Soc. Am. 123, 2867–2874 (2008). https://doi.org/10.1121/1.2902171, Google ScholarScitation, ISI
- 25. A. D. Maxwell, C. A. Cain, T. L. Hall, J. B. Fowlkes, and Z. Xu, “ Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials,” Ultrasound Med. Biol. 39, 449–465 (2013). https://doi.org/10.1016/j.ultrasmedbio.2012.09.004, Google ScholarCrossref
- 26. E. Vlaisavljevich, A. Maxwell, M. Warnez, E. Johnsen, C. Cain, and Z. Xu, “ Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 341–352 (2014). https://doi.org/10.1109/TUFFC.2014.6722618, Google ScholarCrossref
- 27. X. Yang and C. C. Church, “ A model for the dynamics of gas bubbles in soft tissue,” J. Acoust. Soc. Am. 118, 3595–3606 (2005). https://doi.org/10.1121/1.2118307, Google ScholarScitation, ISI
- 28. R. Gaudron, M. T. Warnez, and E. Johnsen, “ Bubble dynamics in a viscoelastic medium with nonlinear elasticity,” J. Fluid Mech. 766, 54–75 (2015). https://doi.org/10.1017/jfm.2015.7, Google ScholarCrossref, ISI
- 29. J. Diani, “ Irreversible growth of a spherical cavity in rubber-like material: A fracture mechanics description,” Int. J. Fracture 112, 151–161 (2001). https://doi.org/10.1023/A:1013311526076, Google ScholarCrossref
- 30. A. N. Gent and C. Wang, “ Fracture mechanics and cavitation in rubber-like solids,” J. Mater. Sci. 26, 3392–3395 (1991). https://doi.org/10.1007/BF01124691, Google ScholarCrossref
- 31. P. Movahed, W. Kreider, A. D. Maxwell, M. R. Bailey, and J. B. Freund, “ Ultrasound induced bubble clusters and tunnels in tissue-mimicking agarose phantoms,” (unpublished) (2016). Google Scholar
- 32. F. Hamaguchi and K. Ando, “ Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation,” Phys. Fluids 27(11), 113103 (2015). https://doi.org/10.1063/1.4935875, Google ScholarCrossref, ISI
- 33. S. Catheline, J.-L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram, and J. Culioli, “ Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: An inverse problem approach,” J. Acoust. Soc. Am. 116, 3734–3741 (2004). https://doi.org/10.1121/1.1815075, Google ScholarScitation, ISI
- 34. L. Liu, Y. Fan, and W. Li, “ Viscoelastic shock wave in ballistic gelatin behind soft body armor,” J. Mech. Behav. Biomed. Mater. 34, 199–207 (2014). https://doi.org/10.1016/j.jmbbm.2014.02.011, Google ScholarCrossref
- 35. V. T. Nayar, J. D. Weiland, C. S. Nelson, and A. M. Hodge, “ Elastic and viscoelastic characterization of agar,” J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012). https://doi.org/10.1016/j.jmbbm.2011.05.027, Google ScholarCrossref
- 36. J. Zhang, C. R. Daubert, and E. A. Foegeding, “ Characterization of polyacrylamide gels as an elastic model for food gels,” Rheol. Acta 44, 622–630 (2005). https://doi.org/10.1007/s00397-005-0444-5, Google ScholarCrossref
- 37. S. J. Lind and T. N. Phillips, “ Bubble collapse in compressible fluids using a spectral element marker particle method. Part 2. Viscoelastic fluids,” Int. J. Numer. Methods Fluids 71(9), 1103–1130 (2013). https://doi.org/10.1002/fld.3701, Google ScholarCrossref
- 38. C. Hua and E. Johnsen, “ Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium,” Phys. Fluids 25(8), 083101 (2013). https://doi.org/10.1063/1.4817673, Google ScholarCrossref, ISI
- 39. K. Foteinopoulou and M. Laso, “ Numerical simulation of bubble dynamics in a Phan-Thien–Tanner liquid: Non-linear shape and size oscillatory response under periodic pressure,” Ultrasonics 50, 758–776 (2010). https://doi.org/10.1016/j.ultras.2010.03.002, Google ScholarCrossref
- 40. M. T. Warnez and E. Johnsen, “ Numerical modeling of bubble dynamics in viscoelastic media with relaxation,” Phys. Fluids 27(6), 063103 (2015). https://doi.org/10.1063/1.4922598, Google ScholarCrossref, ISI
- 41. A. P. Evan, L. R. Willis, J. E. Lingeman, and J. A. McAteer, “ Renal trauma and the risk of long-term complications in shock wave lithotripsy,” Nephron 78, 1–8 (1998). https://doi.org/10.1159/000044874, Google ScholarCrossref, ISI
- 42. A. F. Bower, Applied Mechanics of Solids ( CRC Press, Boca Raton, FL, 2009), p. 775. Google ScholarCrossref
- 43. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues ( Springer Science & Business Media, New York, 2013. Google Scholar
- 44. Y. C. Fung, K. Fronek, and P. Patitucci, “ Pseudoelasticity of arteries and the choice of its mathematical expression,” Am. J. Physiol. Heart Circ. Physiol. 237, 620–631 (1979). Google ScholarCrossref
- 45. G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Method for Physicists: A Comprehensive Guide ( Academic, Oxford, 2013), p.1220. Google Scholar
- 46. A. Prosperetti, “ A generalization of the Rayleigh–Plesset equation of bubble dynamics,” Phys. Fluids 25, 409–410 (1982). https://doi.org/10.1063/1.863775, Google ScholarCrossref, ISI
- 47. M. A. Ainslie and T. G. Leighton, “ Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble,” J. Acoust. Soc. Am. 130, 3184–3208 (2011). https://doi.org/10.1121/1.3628321, Google ScholarScitation, ISI
- 48. A. N. Gent and P. B. Lindley, “ Internal rupture of bonded rubber cylinders in tension,” Proc. R. Soc. A 249, 195–205 (1959). https://doi.org/10.1098/rspa.1959.0016, Google ScholarCrossref
- 49. V. Lefevre, K. Ravi-Chandar, and O. Lopez-Pamies, “ Cavitation in rubber: An elastic instability or a fracture phenomenon?,” Int. J. Fracture 192, 1–23 (2014). https://doi.org/10.1007/s10704-014-9982-0, Google ScholarCrossref
- 50. A. Eller and H. G. Flynn, “ Rectified diffusion during nonlinear pulsations of cavitation bubbles,” J. Acoust. Soc. Am. 37, 493–503 (1965). https://doi.org/10.1121/1.1909357, Google ScholarScitation, ISI
- 51. L. A. Crum, S. Daniels, G. R. Ter Haar, and M. Dyson, “ Ultrasonically induced gas bubble production in agar based gels: Part II, theoretical analysis,” Ultrasound Med. Biol. 13(9), 541–554 (1987). https://doi.org/10.1016/0301-5629(87)90180-3, Google ScholarCrossref
- 52. P. S. Epstein and M. S. Plesset, “ On the stability of gas bubbles in liquid–gas solutions,” J. Chem. Phys. 18, 1505–1509 (1950). https://doi.org/10.1063/1.1747520, Google ScholarCrossref, ISI
- 53. A. Chakrabarti and M. K. Chaudhury, “ Direct measurement of the surface tension of a soft elastic hydrogel: Exploration of elastocapillary instability in adhesion,” Langmuir 29, 6926–6935 (2013). https://doi.org/10.1021/la401115j, Google ScholarCrossref
- 54. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing ( Cambridge University Press, New York, 1992), p. 933. Google Scholar
- 55. I. Choi and R. T. Shield, “ Second-order effects in problems for a class of elastic materials,” Z. Angew. Math. Phys. 32, 361–381 (1981). https://doi.org/10.1007/BF00955616, Google ScholarCrossref
- 56. L. M. Barrangou, C. R. Daubert, and E. A. Foegeding, “ Textural properties of agarose gels. I. Rheological and fracture properties,” Food Hydrocoll. 20, 184–195 (2006). https://doi.org/10.1016/j.foodhyd.2005.02.019, Google ScholarCrossref
- 57. D. T. N. Chen, Q. Wen, P. A. Janmey, J. C. Crocker, and A. G. Yodh, “ Rheology of soft materials,” Annu. Rev. Condens. Matter Phys. 1, 301–322 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-104120, Google ScholarCrossref, ISI
- 58. A. Livne, E. Bouchbinder, I. Svetlizky, and J. Fineberg, “ The near-tip fields of fast cracks,” Science 327(5971), 1359–1363 (2010). https://doi.org/10.1126/science.1180476, Google ScholarCrossref
- 59. T. C. Laurent, “ Determination of the structure of agarose gels by gel chromatography,” BBA-Gen. Subjects 136, 199–205 (1967). https://doi.org/10.1016/0304-4165(67)90064-5, Google ScholarCrossref
- 60. R. B. Bird, R. C. Armstrong, O. Hassager, and C. F. Curtiss, Dynamics of Polymeric Liquids ( Wiley, New York, 1977), Vol. 2, p. 421. Google Scholar
- 61. O. Ishizuka and K. Koyama, “ Elongational viscosity at a constant elongational strain rate of polypropylene melt,” Polymer 21, 164–170 (1980). https://doi.org/10.1016/0032-3861(80)90055-5, Google ScholarCrossref
- 62. A. A. Griffith, “ The phenomena of rupture and flow in solids,” Philos. Trans. R. Soc. A 221, 582–593 (1921) https://doi.org/10.1098/rsta.1921.0006. Google ScholarCrossref
- 63. S. B. Hutchens, S. Fakhouri, and A. J. Crosby, “ Elastic cavitation and fracture via injection,” Soft Matter 12(9), 2557–2566 (2016). https://doi.org/10.1039/C5SM02055G, Google ScholarCrossref
- 64. H. J. Kwon, A. D. Rogalsky, and D. Kim, “ On the measurement of fracture toughness of soft biogel,” Polym. Eng. Sci. 51, 1078–1086 (2011). https://doi.org/10.1002/pen.21923, Google ScholarCrossref
- 65. E. A. Foegeding, C. Gonzalez, D. D. Hamann, and S. Case, “ Polyacrylamide gels as elastic models for food gels,” Food Hydrocoll. 8, 125–134 (1994). https://doi.org/10.1016/S0268-005X(09)80038-6, Google ScholarCrossref
- 66. J. Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, “ Highly stretchable and tough hydrogels,” Nature 489, 133–136 (2012). https://doi.org/10.1038/nature11409, Google ScholarCrossref
- 67. S. Kundu and A. J. Crosby, “ Cavitation and fracture behavior of polyacrylamide hydrogels,” Soft Matter 5, 3963–3968 (2009). https://doi.org/10.1039/b909237d, Google ScholarCrossref
- 68. M. A. Miner, “ Cumulative damage in fatigue,” J. Appl. Mech. 12, 159–164 (1945). Google ScholarCrossref
- 69. N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue ( Prentice Hall, Upper Saddle River, NJ, 1993). Google Scholar
- 70. V. A. P. Martins dos Santos, E. J. T. M. Leenen, M. M. Rippoll, C. van der Sluis, T. van Vliet, J. Tramper, and R. H. Wijffels, “ Relevance of rheological properties of gel beads for their mechanical stability in bioreactors,” Biotechnol. Bioeng. 56, 517–529 (1997). https://doi.org/10.1002/(SICI)1097-0290(19971205)56:5%3E517::AID-BIT5%3C3.0.CO;2-L, Google ScholarCrossref
- 71. S. H. Teoh, “ Fatigue of biomaterials: A review,” Int. J. Fatigue 22, 825–837 (2000). https://doi.org/10.1016/S0142-1123(00)00052-9, Google ScholarCrossref
- 72. R. W. Hertzberg and J. A. Manson, Fatigue of Engineering Plastics ( Academic, New York, 1980), p. 295. Google Scholar
- 73. D. J. Krzypow and C. M. Rimnac, “ Cyclic steady state stress–strain behavior of UHMW polyethylene,” Biomaterials 21, 2081–2087 (2000). https://doi.org/10.1016/S0142-9612(00)00138-1, Google ScholarCrossref
- 74. R. W. Meyer and L. A. Pruitt, “ The effect of cyclic true strain on the morphology, structure, and relaxation behavior of ultra high molecular weight polyethylene,” Polymer 42, 5293–5306 (2001). https://doi.org/10.1016/S0032-3861(00)00626-1, Google ScholarCrossref
- 75. H. Schechtman and D. L. Bader, “ Fatigue damage of human tendons,” J. Biomech. 35, 347–353 (2002). https://doi.org/10.1016/S0021-9290(01)00177-4, Google ScholarCrossref
- 76. N. D. Broom, “ The stress/strain and fatigue behaviour of glutaraldehyde preserved heart-valve tissue,” J. Biomech. 10, 707–724 (1977). https://doi.org/10.1016/0021-9290(77)90086-0, Google ScholarCrossref
- 77. N. D. Broom, “ Fatigue-induced damage in glutaraldehyde-preserved heart valve tissue,” J. Thorac. Cardiovasc. Surg. 76, 202–211 (1978). Google ScholarCrossref
- 78. J. M. Paez, A. C. Sanmartín, E. J. Herrero, I. Millan, A. Cordon, A. Rocha, M. Maestro, R. Burgos, G. Tellez, and J. L. Castillo-Olivares, “ Durability of a cardiac valve leaflet made of calf pericardium: Fatigue and energy consumption,” J. Biomed. Mater. Res. A 77, 839–849 (2006). https://doi.org/10.1002/jbm.a.30650, Google ScholarCrossref
- 79. T. L. Sellaro, D. Hildebrand, Q. Lu, N. Vyavahare, M. Scott, and M. S. Sacks, “ Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading,” J. Biomed. Mater. Res. A 80, 194–205 (2007). https://doi.org/10.1002/jbm.a.30871, Google ScholarCrossref
- 80. C. Martin and W. Sun, “ Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects,” Biomech. Model. Mechanobiol. 12, 645–655 (2013). https://doi.org/10.1007/s10237-012-0431-6, Google ScholarCrossref
- 81. C. C. Church, “ A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter,” J. Acoust. Soc. Am. 86(1), 215–227 (1989). https://doi.org/10.1121/1.398328, Google ScholarScitation, ISI
- 82. R. O. Cleveland, M. R. Bailey, N. Fineberg, B. Hartenbaum, M. Lokhandwalla, J. A. McAteer, and B. Sturtevant, “ Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3,” Rev. Sci. Instrum. 71, 2514–2525 (2000). https://doi.org/10.1063/1.1150643, Google ScholarCrossref, ISI
- 83. M. Lokhandwalla, J. A. McAteer, J. C. Williams, Jr., and B. Sturtevant, “ Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear,” Phys. Med. Biol. 46, 1245–1264 (2001). https://doi.org/10.1088/0031-9155/46/4/323, Google ScholarCrossref
- 84. J. B. Freund, T. Colonius, and A. P. Evan, “ A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy,” Ultrasound Med. Biol. 33, 1495–1503 (2007). https://doi.org/10.1016/j.ultrasmedbio.2007.03.001, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.