ABSTRACT
Cross-modal interactions of auditory and visual temporal modulation were examined in a game-like experimental framework. Participants observed an audiovisual stimulus (an animated, sound-emitting fish) whose sound intensity and/or visual size oscillated sinusoidally at either 6 or 7 Hz. Participants made speeded judgments about the modulation rate in either the auditory or visual modality while doing their best to ignore information from the other modality. Modulation rate in the task-irrelevant modality matched the modulation rate in the task-relevant modality (congruent conditions), was at the other rate (incongruent conditions), or had no modulation (unmodulated conditions). Both performance accuracy and parameter estimates from drift-diffusion decision modeling indicated that (1) the presence of temporal modulation in both modalities, regardless of whether modulations were matched or mismatched in rate, resulted in audiovisual interactions; (2) congruence in audiovisual temporal modulation resulted in more reliable information processing; and (3) the effects of congruence appeared to be stronger when judging visual modulation rates (i.e., audition influencing vision), than when judging auditory modulation rates (i.e., vision influencing audition). The results demonstrate that audiovisual interactions from temporal modulations are bi-directional in nature, but with potential asymmetries in the size of the effect in each direction.
ACKNOWLEDGMENTS
This work was funded by CELEST, a National Science Foundation Science of Learning Center (SBE-0354378), and SL-CN: Engaging Learning Network, a National Science Foundation Collaborative Network (SMA/SBE-1540920). We would like to thank Lorraine Delhorne for conducting hearing screenings on the individuals who took part in this study. We would also like to thank Diego Fernandez-Duque and three anonymous reviewers for their comments on an earlier version of this manuscript.
REFERENCES
- 1. Alais, D., and Burr, D. (2004). “ The ventriloquist effect results from near-optimal bimodal integration,” Curr. Biol. 14, 257–262. https://doi.org/10.1016/j.cub.2004.01.029, Google ScholarCrossref
- 2. Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). “ Fitting linear mixed-effects models using lme4,” J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01, Google ScholarCrossref, ISI
- 3. Bizley, J. K., Maddox, R. K., and Lee, A. K. C. (2016). “ Defining auditory-visual objects: Behavioral tests and physiological mechanisms,” Trends Neurosci. 39, 74–85. https://doi.org/10.1016/j.tins.2015.12.007, Google ScholarCrossref
- 4. Bizley, J. K., Shinn-Cunningham, B. G., and Lee, A. K. C. (2012). “ Nothing is irrelevant in a noisy world: Sensory illusions reveal obligatory within-and across-modality integration,” J. Neurosci. 32, 13402–13410. https://doi.org/10.1523/JNEUROSCI.2495-12.2012, Google ScholarCrossref
- 5. Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J. D. (2006). “ The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks,” Psychol. Rev. 113, 700–765. https://doi.org/10.1037/0033-295X.113.4.700, Google ScholarCrossref
- 6. Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M., Samanta, J., Sherman, S. J., and Frank, M. J. (2011). “ Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold,” Nat. Neurosci. 14, 1462–1467. https://doi.org/10.1038/nn.2925, Google ScholarCrossref
- 6. Chandrasekaran, C., Trubanova, A., Stillittano, S., Caplier, A., and Ghazanfar, A. A. (2009). “ The natural statistics of audiovisual speech,” PLoS Computat. Biol. 5(7), e1000436. https://doi.org/10.1371/journal.pcbi.1000436, Google ScholarCrossref
- 7. Cohen, J. (1992). “ A power primer,” Psychol. Bull. 112, 115–159. https://doi.org/10.1037/0033-2909.112.1.155, Google ScholarCrossref
- 8. Denison, R. N., Driver, J., and Ruff, C. C. (2013). “ Temporal structure and complexity affect audio-visual correspondence detection,” Front. Psychol. 3, 619. https://doi.org/10.3389/fpsyg.2012.00619, Google ScholarCrossref
- 9. Euston, D. R., Gruber, A. J., and McNaughton, B. L. (2012). “ The role of medial prefrontal cortex in memory and decision making,” Neuron 76, 1057–1070. https://doi.org/10.1016/j.neuron.2012.12.002, Google ScholarCrossref
- 10. Faraway, J. J. (2014). Linear Models With R, 2nd ed. ( CRC Press, Boca Raton, FL). Google Scholar
- 10. Fleiss, J. L., Cooper, H., and Hedges, L. V., eds. (1994). The Handbook of Research Synthesis ( Russell Sage Foundation, New York), pp. 245–260. Google Scholar
- 11. Forstmann, B. U., Ratcliff, R., and Wagenmakers, E.-J. (2016). “ Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions,” Annu. Rev. Psychol. 67, 641–666. https://doi.org/10.1146/annurev-psych-122414-033645, Google ScholarCrossref
- 11. Fujisaka, W., and Nishida, S. (2005). “ Temporal frequency characteristics of synchrony-asynchrony discrimination of audio-visual signals,” Exp. Brain Res. 166(3–4), 455–464. https://doi.org/10.1007/s00221-005-2385-8, Google ScholarCrossref
- 12. Gebhard, J. W., and Mowbray, G. H. (1959). “ On discriminating the rate of visual flicker and auditory flutter,” Am. J. Psychol. 72, 521–529. https://doi.org/10.2307/1419493, Google ScholarCrossref
- 12. Goldberg, H., Sun, Y., Hickey, T. J., Shinn-Cunnigham, B., and Sekuler, R. (2015). “ Policing fish at Boston's Museum of Science: Studying audiovisual interaction in the wild,” i-Perception 6(4), 1. https://doi.org/10.1177/2041669515599332, Google ScholarCrossref
- 13. Green, D. M., and Swets, J. A. (1966). Signal Detection Theory and Psychophysics ( Wiley, New York). Google Scholar
- 14. Hein, G., Doehrmann, O., Muller, N. G., Kaiser, J., Muckli, L., and Naumer, M. J. (2007). “ Object familiarity and semantic congruency modulate responses in cortical audiovisual integration areas,” J. Neurosci. 27, 7881–7887. https://doi.org/10.1523/JNEUROSCI.1740-07.2007, Google ScholarCrossref
- 15. Heitz, R. P. (2014). “ The speed-accuracy tradeoff: History, physiology, methodology, and behavior,” Front. Neurosci. 8, 150. https://doi.org/10.3389/fnins.2014.00150, Google ScholarCrossref
- 16. Herz, D. M., Zavala, B. A., Bogacz, R., and Brown, P. (2016). “ Neural correlates of decision thresholds in the human subthalamic nucleus,” Curr. Biol. 26, 916–920. https://doi.org/10.1016/j.cub.2016.01.051, Google ScholarCrossref
- 17. Hickey, T. J. (2013). fishgame, https://github.com/tjhickey724/fishgame (Last viewed January 4, 2017). Google Scholar
- 18. Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., Scheibe, S., and Hothorn, M. T. (2016). Package “multcomp,” http://cran.stat.sfu.ca/web/packages/multcomp/multcomp.pdf (Last viewed February 21, 2017). Google Scholar
- 19. Hyndman, R. J. (2015). Package “hdrcde,” http://cran.stat.sfu.ca/web/packages/hdrcde/hdrcde.pdf (Last viewed February 21, 2017). Google Scholar
- 20. Koelewijn, T., Bronkhorst, A., and Theeuwes, J. (2010). “ Attention and the multiple stages of multisensory integration: A review of audiovisual studies,” Acta Psychol. (Amst.) 134, 372–384. https://doi.org/10.1016/j.actpsy.2010.03.010, Google ScholarCrossref
- 21. Kruschke, J. K. (2013). “ Bayesian estimation supersedes the t test,” J. Exp. Psychol. Gen. 142, 573–603. https://doi.org/10.1037/a0029146, Google ScholarCrossref
- 22. Kubovy, M., and Yu, M. (2012). “ Multistability, cross-modal binding and the additivity of conjoined grouping principles,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 954–964. https://doi.org/10.1098/rstb.2011.0365, Google ScholarCrossref
- 23. Leung, H.-C., Skudlarski, P., Gatenby, J. C., Peterson, B. S., and Gore, J. C. (2000). “ An event-related functional MRI study of the stroop color word interference task,” Cereb. Cortex 10, 552–560. https://doi.org/10.1093/cercor/10.6.552, Google ScholarCrossref
- 24. Luck, S. J., and Vogel, E. K. (1997). “ The capacity of visual working memory for features and conjunctions,” Nature 390, 279–281. https://doi.org/10.1038/36846, Google ScholarCrossref
- 25. Maddox, R. K., Atilgan, H., Bizley, J. K., and Lee, A. K. (2015). “ Auditory selective attention is enhanced by a task-irrelevant temporally coherent visual stimulus in human listeners,” Elife 4, e04995. https://doi.org/10.7554/eLife.04995, Google ScholarCrossref
- 26. Marks, L. E. (1987). “ On cross-modal similarity: Auditory-visual interactions in speeded discrimination,” J. Exp. Psychol. Hum. Percept. Perform. 13, 384–394. https://doi.org/10.1037/0096-1523.13.3.384, Google ScholarCrossref
- 27. Mathias, S. R. (2016). “ Unified analysis of accuracy and reaction times via models of decision making,” Proc. Mtgs. Acoust. 26, 050001. https://doi.org/10.1121/2.0000219, Google ScholarScitation
- 28. Matzke, D., and Wagenmakers, E.-J. (2009). “ Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis,” Psychon. Bull. Rev. 16, 798–817. https://doi.org/10.3758/PBR.16.5.798, Google ScholarCrossref
- 29. Meredith, M. A., Nemitz, J. W., and Stein, B. E. (1987). “ Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors,” J. Neurosci. 7, 3215–3229. Google ScholarCrossref
- 30. Meredith, M. A., and Stein, B. E. (1986). “ Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration,” J. Neurophysiol. 56, 640–662. Google ScholarCrossref
- 31. Michalka, S. W., Kong, L., Rosen, M. L., Shinn-Cunningham, B. G., and Somers, D. C. (2015). “ Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks,” Neuron 87, 882–892. https://doi.org/10.1016/j.neuron.2015.07.028, Google ScholarCrossref
- 32. Milosavljevic, M., Malmaud, J., Huth, A., Koch, C., and Rangel, A. (2010). “ The drift diffusion model can account for the accuracy and reaction time of value-based choices under high and low time pressure,” Judgm. Decis. Mak. 5, 437–449. Google Scholar
- 32. Miranda, A. T., and Palmer, E. M. (2013). “ Intrinsic motivation and attentional capture from gamelike features in a visual search task,” Behav. Res. Methods 46(1), 159–172. https://doi.org/10.3758/s13428-013-0357-7, Google ScholarCrossref
- 33. Molholm, S., Martinez, A., Shpaner, M., and Foxe, J. J. (2007). “ Object-based attention is multisensory: Co-activation of an object's representations in ignored sensory modalities,” Eur. J. Neurosci. 26, 499–509. https://doi.org/10.1111/j.1460-9568.2007.05668.x, Google ScholarCrossref
- 34. Noppeney, U., Ostwald, D., and Werner, S. (2010). “ Perceptual decisions formed by accumulation of audiovisual evidence in prefrontal cortex,” J. Neurosci. Off. J. Soc. Neurosci. 30, 7434–7446. https://doi.org/10.1523/JNEUROSCI.0455-10.2010, Google ScholarCrossref
- 35. Parise, C. V., Spence, C., and Ernst, M. O. (2012). “ When correlation implies causation in multisensory integration,” Curr. Biol. 22, 46–49. https://doi.org/10.1016/j.cub.2011.11.039, Google ScholarCrossref
- 36. Patil, A., Huard, D., and Fonnesbeck, C. J. (2010). “ PyMC: Bayesian stochastic modelling in Python,” J. Stat. Softw. 35, 1. https://doi.org/10.18637/jss.v035.i04, Google ScholarCrossref
- 37. Ratcliff, R. (1978). “ A theory of memory retrieval,” Psychol. Rev. 85, 59–108. https://doi.org/10.1037/0033-295X.85.2.59, Google ScholarCrossref
- 38. Ratcliff, R., and Childers, R. (2015). “ Individual differences and fitting methods for the two-choice diffusion model of decision making,” Decision 2, 237–279. https://doi.org/10.1037/dec0000030, Google ScholarCrossref
- 39. Ratcliff, R., and McKoon, G. (2008). “ The diffusion decision model: Theory and data for two-choice decision tasks,” Neural Comput. 20, 873–922. https://doi.org/10.1162/neco.2008.12-06-420, Google ScholarCrossref
- 40. Ratcliff, R., and Rouder, J. N. (1998). “ Modeling response times for two-choice decisions,” Psychol. Sci. 9, 347–356. https://doi.org/10.1111/1467-9280.00067, Google ScholarCrossref
- 41. Recanzone, G. H. (2002). “ Auditory influences on visual temporal rate perception,” J. Neurophysiol. 89, 1078–1093. https://doi.org/10.1152/jn.00706.2002, Google ScholarCrossref
- 42. Shams, L., Kamitani, Y., and Shimojo, S. (2002). “ Visual illusion induced by sound,” Cogn. Brain Res. 14, 147–152. https://doi.org/10.1016/S0926-6410(02)00069-1, Google ScholarCrossref
- 43. Shinn-Cunningham, B. G. (2008). “ Object-based auditory and visual attention,” Trends Cogn. Sci. 12, 182–186. https://doi.org/10.1016/j.tics.2008.02.003, Google ScholarCrossref
- 44. Shipley, T. (1964). “ Auditory flutter-driving of visual flicker,” Science 145, 1328–1330. https://doi.org/10.1126/science.145.3638.1328, Google ScholarCrossref
- 45. Soto-Faraco, S., Lyons, J., Gazzaniga, M., Spence, C., and Kingstone, A. (2002). “ The ventriloquist in motion: Illusory capture of dynamic information across sensory modalities,” Cogn. Brain Res. 14, 139–146. https://doi.org/10.1016/S0926-6410(02)00068-X, Google ScholarCrossref
- 46. Soto-Faraco, S., Spence, C., and Kingstone, A. (2004). “ Cross-modal dynamic capture: Congruency effects in the perception of motion across sensory modalities,” J. Exp. Psychol. Hum. Percept. Perform. 30, 330–345. https://doi.org/10.1037/0096-1523.30.2.330, Google ScholarCrossref
- 47. Speckman, P. L., Rouder, J. N., Morey, R. D., and Pratte, M. S. (2008). “ Delta plots and coherent distribution ordering,” Am. Stat. 62, 262–266. https://doi.org/10.1198/000313008X333493, Google ScholarCrossref
- 48. Spence, C. (2011). “ Crossmodal correspondences: A tutorial review,” Atten. Percept. Psychophys. 73, 971–995. https://doi.org/10.3758/s13414-010-0073-7, Google ScholarCrossref
- 49. Spence, C., and Driver, J. (1997). “ On measuring selective attention to an expected sensory modality,” Percept. Psychophys. 59, 389–403. https://doi.org/10.3758/BF03211906, Google ScholarCrossref
- 50. Spence, C., and Squire, S. (2003). “ Multisensory integration: Maintaining the perception of synchrony,” Curr. Biol. 13, R519–R521. https://doi.org/10.1016/S0960-9822(03)00445-7, Google ScholarCrossref
- 51. Sun, Y., Shinn-Cunningham, B., Hickey, T. J., and Sekuler, R. (2016). “ Catching audiovisual interactions with a first-person fisherman video game,” Perception. in press. https://doi.org/10.1177/0301006616682755, Google ScholarCrossref
- 52. Talsma, D., Senkowski, D., Soto-Faraco, S., and Woldorff, M. G. (2010). “ The multifaceted interplay between attention and multisensory integration,” Trends Cogn. Sci. 14, 400–410. https://doi.org/10.1016/j.tics.2010.06.008, Google ScholarCrossref
- 53. Treisman, A. M., and Gelade, G. (1980). “ A feature-integration theory of attention,” Cognit. Psychol. 12, 97–136. https://doi.org/10.1016/0010-0285(80)90005-5, Google ScholarCrossref
- 53. Ulrich, R., Schröter, H., Leuthold, H., and Birngruber, T. (2015). “ Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions,” Cogn. Psychol. 78, 148–174. https://doi.org/10.1016/j.cogpsych.2015.02.005, Google ScholarCrossref
- 54. van Veen, V., and Carter, C. S. (2002). “ The anterior cingulate as a conflict monitor: fMRI and ERP studies,” Physiol. Behav. 77, 477–482. https://doi.org/10.1016/S0031-9384(02)00930-7, Google ScholarCrossref
- 55. Vendrell, P., Junqué, C., Pujol, J., Jurado, M. A., Molet, J., and Grafman, J. (1995). “ The role of prefrontal regions in the Stroop task,” Neuropsychologia 33, 341–352. https://doi.org/10.1016/0028-3932(94)00116-7, Google ScholarCrossref
- 56. Voss, A., Nagler, M., and Lerche, V. (2013). “ Diffusion models in experimental psychology: A practical introduction,” Exp. Psychol. 60, 385–402. https://doi.org/10.1027/1618-3169/a000218, Google ScholarCrossref
- 57. Wagenmakers, E.-J. (2009). “ Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy,” Eur. J. Cogn. Psychol. 21, 641–671. https://doi.org/10.1080/09541440802205067, Google ScholarCrossref
- 57. Washburn, D. A. (2003). “ The games psychologists play (and the data they provide),” Behav. Res. Methods, Instrum., Comput. 35(2), 185–193. https://doi.org/10.3758/BF03202541, Google ScholarCrossref
- 58. Welch, R. B., and Warren, D. H. (1980). “ Immediate perceptual response to intersensory discrepancy,” Psychol. Bull. 88, 638–667. https://doi.org/10.1037/0033-2909.88.3.638, Google ScholarCrossref
- 59. White, C. N., Ratcliff, R., and Starns, J. J. (2011). “ Diffusion models of the flanker task: Discrete versus gradual attentional selection,” Cognit. Psychol. 63, 210–238. https://doi.org/10.1016/j.cogpsych.2011.08.001, Google ScholarCrossref
- 60. Wickelgren, W. A. (1977). “ Speed-accuracy tradeoff and information processing dynamics,” Acta Psychol. (Amst.) 41, 67–85. https://doi.org/10.1016/0001-6918(77)90012-9, Google ScholarCrossref
- 61. Wiecki, T. V., Sofer, I., and Frank, M. J. (2016). “ Stimulus coding with HDDMRegression — HDDM 0.6.0 documentation,” http://ski.clps.brown.edu/hddm_docs/tutorial_regression_stimcoding.html (Last viewed November 8, 2016). Google Scholar
- 62. Wiecki, T. V., Sofer, I., and Frank, M. J. (2013). “ HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python,” Front. Neuroinformatics 7, 14. https://doi.org/10.3389/fninf.2013.00014, Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.