No Access Submitted: 27 July 2017 Accepted: 27 January 2018 Published Online: 26 February 2018
The Journal of the Acoustical Society of America 143, 1182 (2018); https://doi.org/10.1121/1.5024332
Seismic interferometry recovers the Green's function between two receivers by cross-correlating the field measured from sources that surround the receivers. In the seismic literature, it has been widely reported that this processing can produce artifacts in the Green's function estimate called “spurious multiples” or the “virtual refracted wave.” The spurious multiples are attributed to the head wave and its multiples and travels in the seabed. The head wave phenomenon is shown to be observable from both controlled active sources and from ocean ambient noise and for both vertical and horizontal arrays. The processing used is a generalization of the passive fathometer to produce cross-beam correlations. This passive fathometer is equivalent to the seismic interferometry techniques for delay and sum beamforming but not for adaptive beamforming. Modeling and experimental data show the head wave is observed in ocean noise and can be used to estimate the seabed sound speed.
The authors would like to gratefully acknowledge support for this research by the Office of Naval Research Ocean Acoustics Program under Grant No. N00014-13-1-0632. We also would like to acknowledge the NATO Centre for Maritime Research and Experimentation as well as Peter Nielsen, Chris Harrison, and Jurgen Sellschopp for their collaborations and help in providing the experimental data.
  1. 1. G. T. Schuster, Seismic Interferometry ( Cambridge University Press, Cambridge, UK, 2009). Google ScholarCrossref
  2. 2. L. A. Brooks and P. Gerstoft, “ Green's function approximation from cross-correlation of active sources in the ocean,” J. Acoust. Soc. Am. 126(1), 46–55 (2009). https://doi.org/10.1121/1.3143143, Google ScholarScitation, ISI
  3. 3. K. Wapenaar, D. Draganov, R. Snieder, X. Campman, and A. Verdel, “ Tutorial on seismic interferometry: Part 1: Basic principles and applications,” Geophys. 75(5), A195–A209 (2010). https://doi.org/10.1190/1.3457445, Google ScholarCrossref
  4. 4. P. Roux, W. A. Kuperman, and NPAL Group, “ Extracting coherent wave fronts from acoustic ambient noise in the ocean,” J. Acoust. Soc. Am. 116(4), 1995–2003 (2004). https://doi.org/10.1121/1.1797754, Google ScholarScitation, ISI
  5. 5. P. Roux, K. G. Sabra, W. A. Kuperman, and A. Roux, “ Ambient noise cross correlation in free space: Theoretical approach,” J. Acoust. Soc. Am. 117(1), 79–84 (2005). https://doi.org/10.1121/1.1830673, Google ScholarScitation, ISI
  6. 6. K. G. Sabra, P. Roux, and P. W. A. Kuperman, “ Emergence rate of the time-domain Green's function from the ambient noise cross-correlation function,” J. Acoust. Soc. Am. 118(6), 3524–3531 (2005). https://doi.org/10.1121/1.2109059, Google ScholarScitation, ISI
  7. 7. R. Snieder, K. Wapenaar, and K. Larner, “ Spurious multiples in seismic interferometry of primaries,” Geophys. 71(4), SI111–SI124 (2006). https://doi.org/10.1190/1.2211507, Google ScholarCrossref
  8. 8. D. Mikesell, K. van Wijk, A. Calvert, and M. Haney, “ The virtual refraction: Useful spurious energy in seismic interferometry,” Geophys. 74(3), A13–A17 (2009). https://doi.org/10.1190/1.3095659, Google ScholarCrossref
  9. 9. S. King and A. Curtis, “ Suppressing nonphysical reflections in Green's function estimates using source−receiver interferometry,” Geophys. 77(1), Q15–Q25 (2012). https://doi.org/10.1190/geo2011-0300.1, Google ScholarCrossref
  10. 10. O. A. Godin, N. R. Chapman, M. C. A. Laidlaw, and D. E. Hannay, “ Head wave data inversion for geoacoustic parameters of the ocean bottom off Vancouver Island,” J. Acoust. Soc. Am. 106(5), 2540–2551 (1999). https://doi.org/10.1121/1.428130, Google ScholarScitation, ISI
  11. 11. J. W. Choi and P. H. Dahl, “ First-order and zeroth-order head waves, their sequence, and implications for geoacoustic inversion,” J. Acoust. Soc. Am. 119(6), 3660–3668 (2006). https://doi.org/10.1121/1.2195110, Google ScholarScitation, ISI
  12. 12. C. H. Harrison and M. Siderius, “ Using beam-beam cross-correlation of noise to investigate back-scatter,” in Proceedings of the Eighth European Conference on Underwater Acoustics, 8th ECUA 2006. Google Scholar
  13. 13. J. Gebbie and M. Siderius, “ Head wave correlations in ambient noise,” J. Acoust. Soc. Am. 140(1), EL62–EL66 (2016). https://doi.org/10.1121/1.4954897, Google ScholarScitation, ISI
  14. 14. C. H. Harrison and D. G. Simons, “ Geoacoustic inversion of ambient noise: A simple method,” J. Acoust. Soc. Am. 112(4), 1377–1389 (2002). https://doi.org/10.1121/1.1506365, Google ScholarScitation, ISI
  15. 15. M. Siderius, C. H. Harrison, and M. B. Porter, “ A passive fathometer technique for imaging seabed layering using ambient noise,” J. Acoust. Soc. Am. 120(3), 1315–1323 (2006). https://doi.org/10.1121/1.2227371, Google ScholarScitation, ISI
  16. 16. L. Muzi, M. Siderius, J. E. Quijano, and S. E. Dosso, “ High-resolution bottom-loss estimation using the ambient-noise vertical coherence function,” J. Acoust. Soc. Am. 137(1), 481–491 (2015). https://doi.org/10.1121/1.4904508, Google ScholarScitation, ISI
  17. 17. J. E. Quijano, S. E. Dosso, J. Dettmer, L. M. Zurk, M. Siderius, and C. H. Harrison, “ Bayesian geoacoustic inversion using wind-driven ambient noise,” J. Acoust. Soc. Am. 131(4), 2658–2667 (2012). https://doi.org/10.1121/1.3688482, Google ScholarScitation, ISI
  18. 18. K. G. Sabra, P. Roux, A. M. Thode, G. L. D'Spain, W. S. Hodgkiss, and W. A. Kuperman, “ Using ocean ambient noise for array self-localization and self-synchronization,” IEEE J. Ocean. Eng. 30(2), 338–347 (2005). https://doi.org/10.1109/JOE.2005.850908, Google ScholarCrossref
  19. 19. L. A. Brooks and P. Gerstoft, “ Green's function approximation from cross-correlations of 20−100 Hz noise during a tropical storm,” J. Acoust. Soc. Am. 125(2), 723–734 (2009). https://doi.org/10.1121/1.3056563, Google ScholarScitation, ISI
  20. 20. O. A. Godin, M. G. Brown, N. A. Zabotin, L. Y. Zabotina, and N. J. Williams, “ Passive acoustic measurement of flow velocity in the Straits of Florida,” Geosci. Lett. 1(1), 16 (2014). https://doi.org/10.1186/s40562-014-0016-6, Google ScholarCrossref
  21. 21. C. H. Harrison and M. Siderius, “ Bottom profiling by correlating beam-steered noise sequences,” J. Acoust. Soc. Am. 123(3), 1282–1296 (2008). https://doi.org/10.1121/1.2835416, Google ScholarScitation, ISI
  22. 22. M. Siderius, H. C. Song, P. Gerstoft, W. S. Hodgkiss, P. Hursky, and C. H. Harrison, “ Adaptive passive fathometer processing,” J. Acoust. Soc. Am. 127(4), 2193–2200 (2010). https://doi.org/10.1121/1.3303985, Google ScholarScitation, ISI
  23. 23. P. Gerstoft, W. S. Hodgkiss, M. Siderius, C. F. Huang, and C. H. Harrison, “ Passive fathometer processing,” J. Acoust. Soc. Am. 123(3), 1297–1305 (2008). https://doi.org/10.1121/1.2831930, Google ScholarScitation, ISI
  24. 24. J. Traer, P. Gerstoft, and W. S. Hodgkiss, “ Ocean bottom profiling with ambient noise: A model for the passive fathometer,” J. Acoust. Soc. Am. 129(4), 1825–1836 (2011). https://doi.org/10.1121/1.3552871, Google ScholarScitation, ISI
  25. 25. J. Traer and P. Gerstoft, “ Coherent averaging of the passive fathometer response using short correlation time,” J. Acoust. Soc. Am. 130, 3633–3641 (2011). https://doi.org/10.1121/1.3654026, Google ScholarScitation, ISI
  26. 26. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics ( Springer Science & Business Media, New York, 2011). Google ScholarCrossref
  27. 27. D. A. Bevans and M. J. Buckingham, “ Estimating the sound speed of a shallow-water marine sediment from the head wave excited by a low-flying helicopter,” J. Acoust. Soc. Am. 142(4), 2273–2287 (2017). https://doi.org/10.1121/1.5007953, Google ScholarScitation, ISI
  28. 28. S. King and A. Curtis, “ Velocity analysis using both reflections and refractions in seismic interferometry,” Geophys. 76(5), SA83–SA96 (2011). https://doi.org/10.1190/geo2011-0008.1, Google ScholarCrossref
  29. 29. K. Wapenaar and J. Fokkema, “ Green's function representations for seismic interferometry,” Geophys. 71(4), SI33–SI46 (2006). https://doi.org/10.1190/1.2213955, Google ScholarCrossref
  30. 30. J. Li, P. Gerstoft, D. Z. Gao, G. F. Li, and N. Wang, “ Localizing scatterers from surf noise cross correlations,” J. Acoust. Soc. Am. 141(1), EL64–EL69 (2017). https://doi.org/10.1121/1.4974147, Google ScholarScitation, ISI
  31. 31. L. A. Brooks and P. Gerstoft, “ Ocean acoustic interferometry,” J. Acoust. Soc. Am. 121(6), 3377–3385 (2007). https://doi.org/10.1121/1.2723650, Google ScholarScitation, ISI
  32. 32. A. Kaslilar, U. Harmankaya, K. Wapenaar, and D. Draganov, “ Estimating the location of a tunnel using correlation and inversion of Rayleigh wave scattering,” Geophys. Res. Lett. 40, 6084–6088, https://doi.org/10.1002/2013GL058462 (2013). Google ScholarCrossref
  33. 33. G. A. Meles and A. Curtis, “ Physical and non-physical energy in scattered wave source−receiver interferometry,” J. Acoust. Soc. Am. 133(6), 3790–3801 (2013). https://doi.org/10.1121/1.4802825, Google ScholarScitation
  34. 34. H. Schmidt and F. B. Jensen, “ A full wave solution for propagation in multilayered viscoelastic media with application to Gaussian beam reflection at fluid–solid interfaces,” J. Acoust. Soc. Am. 77(3), 813–825 (1985). https://doi.org/10.1121/1.392050, Google ScholarScitation, ISI
  35. 35. H. Schmidt, Oases 3.1 User Guide and Reference Manual, Massachusetts Institute of Technology Cambridge, MA, http://acoustics.mit.edu/faculty/henrik/oases.html, 2004. Google Scholar
  36. 36. W. A. Kuperman and F. Ingenito, “ Spatial correlation of surface generated noise in a stratified ocean,” J. Acoust. Soc. Am. 67(6), 1988–1996 (1980). https://doi.org/10.1121/1.384439, Google ScholarScitation, ISI
  37. 37. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Optimum Array Processing ( Wiley, New York, 2004). Google Scholar
  38. 38. W. S. Burdic, Underwater Acoustic System Analysis ( Prentice-Hall, Englewood Cliffs, NJ, 1991). Google Scholar
  39. 39. C. Holland and J. Osler, “ High-resolution geoacoustic inversion in shallow water: A joint time-and frequency-domain technique,” J. Acoust. Soc. Am. 107(3), 1263–1279 (2000). https://doi.org/10.1121/1.428415, Google ScholarScitation, ISI
  40. 40. C. Holland, R. Hollett, and L. Troiano, “ Measurement technique for bottom scattering in shallow water,” J. Acoust. Soc. Am. 108(3), 997–1011 (2000). https://doi.org/10.1121/1.1287021, Google ScholarScitation, ISI
  41. 41. C. Holland, R. Gauss, P. Hines, P. Nielsen, J. Preston, C. Harrison, D. Ellis, K. LePage, J. Osler, and R. Nero, “ Boundary characterization experiment series overview,” IEEE J. Ocean. Eng. 30(4), 784–806 (2005). https://doi.org/10.1109/JOE.2005.862133, Google ScholarCrossref
  42. 42. M. Siderius, P. Nielsen, and P. Gerstoft, “ Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array,” J. Acoust. Soc. Am. 112(4), 1523–1535 (2002). https://doi.org/10.1121/1.1502264, Google ScholarScitation, ISI
  1. © 2018 Acoustical Society of America.